
How to un-lame
your (relational)
database

Katarzyna Kittel
kasia.kittel@gmail.com

● Important factor of usability - response time

● Performance of database have big impact of

performance of an application.

● When amount of data increase the performance may

decrease dramatically - application may become

inaccessible.

Why performance is important?

● Test your application on database level since the

early stage of development

● Test queries

● Simulate data grow

● Simulate users

How to assure performance?

EXAMPLE

Favorite serie fanpage. Pictures and
characters...

Sample application

● Every picture has a filename and a date when it was

taken.

● Every picture may be associated a type and a place

where it was taken.

● Additionally every character can be tagged on

several pictures, and every picture can be tagged

with several characters.

Sample application

Sample database

Choose pictures with theirs types (only if a picture has a
type).

using WHERE:
select filename, name from pictures, types where
pictures.type_id=types.id;

or using JOIN:
select filename, name from pictures join types on
(pictures.type_id = types.id);

(MySQL) JOINS in a nutshell

JOIN (or simple WHERE)

Imagine a situation when you need all pictures. Doesn't
matter if a picture has a type. In such case you can use
LEFT JOIN.
(That means, the query returns all rows from the left
table, even if there are no matches in the right table).

select filename, name from pictures left join types on
(pictures.type_id = types.id);

(MySQL) JOINS in a nutshell

LEFT JOIN

We can also do something opposite: chose all types and
join the pictures that belongs to them:

select filename, name from pictures right join types on
(pictures.type_id = types.id);

In most cases we can use LEFT or RIGHT JOIN to get the same results
(anyway it is recommended using LEFT JOIN).

select filename, name from types left join pictures on
(pictures.type_id = types.id);

(MySQL) JOINS in a nutshell

RIGHT JOIN

We can use it to join two (or more) tables using columns
with the same names.
NATURAL JOIN works without any join condition.

(WARNING: if you have a habit to name primary key column “id”, MySQL
may use this column to create the conjunction.)

select filename, name from pictures natural join
places;

(MySQL) JOINS in a nutshell

NATURAL JOIN

In MySQL they are equivalent one to each other and
produce exactly the same result as JOIN.

(MySQL) JOINS in a nutshell

INNER and CROSS JOIN

SELECT
FROM table_references
[WHERE where_condition]
[GROUP BY {col_name | expr | position}
[ASC | DESC], ... [WITH ROLLUP]]
[HAVING where_condition]
[ORDER BY {col_name | expr | position}
[ASC | DESC], ...]
[LIMIT {[offset,] row_count | row_count OFFSET offset}]

A bit more advanced queries

SELECT syntax

● WHERE indicates the condition or conditions that
rows must satisfy to be selected.

● GROUP BY must be used with any aggregating
functions to group the resultset by one or more
columns.

● HAVING works only with GROUP BY and should be
used only with aggregation functions (while the
WHERE clause cannot).

● ORDER BY is used to order the result set by a
desired column or columns.

A bit more advanced queries

SELECT syntax

Let’s choose all pictures with a list of people tagged on
each of them.

select filename, name
from people_pictures
join pictures on (people_pictures.
picture_id = pictures.id) join people on
(people_pictures.person_id=people.id);

A bit more advanced queries

Many-to-many relationship

The result set has many rows with the same filenames. Sometimes this can
be a disadvantage. There is an easy way to show every picture with coma-
separated list of tagged characters. For that we can use group_concat
function with GROUP BY clause:

select filename, group_concat(name)
from people_pictures
join pictures on
(people_pictures.picture_id = pictures.id)
join people on
(people_pictures.person_id=people.id)
group by filename;

A bit more advanced queries

Many-to-many relationship

If we need to exclude some results on some conditions we can use
HAVING clause. Let’s choose only the pictures with at least three people
tagged on them.

select filename
from people_pictures
join pictures on
(people_pictures.picture_id = pictures.id)
join people on
(people_pictures.person_id=people.id)
group by filename
having count(name)>2;

A bit more advanced queries

Many-to-many relationship

We can also find all pictures with Ted.

select filename
from people_pictures
join people on
(people_pictures.person_id = people.id)
join pictures on
(people_pictures.picture_id=pictures.id)
where name = 'Ted';

A bit more advanced queries

Many-to-many relationship

At the end let’s find the most tagged character.

select people.name
from people_pictures
join people on
(people_pictures.person_id = people.id)
group by person_id
order by count(person_id) desc
limit 1;

A bit more advanced queries

Many-to-many relationship

Interface with two menus:
1. showing picture types and number of pictures for

each type
2. showing characters and the number of pictures

where they appear

Main content part shows 20 newest pictures.

True story...

Real life (similar) example

True story...

Real life similar example

How we can assure good performance of the
application?

- analyze, improve, test, ...

Think which tables will grow faster and which
should remain the same size.

Prepare for stress

Real life similar example

Estimate how the tables may grow:
20 000 users

average 5 pictures uploaded by a user
during 3 years

table pictures: 300 000 rows
average 3 characters on a pictures

table people_pictures: 900 000 rows.

Prepare for stress

Real life similar example

Make further assumption and generate
sample data.

Some characters may appear on more pictures than
others...

There may be more pictures taken in some particular
places ...

(be careful with random generation with uniform distribution)

Prepare for stress

Real life similar example

Prepare queries. Think which queries will be
used more often.

It is possible to use select cache (resultset
cache)?

Prepare for stress

Real life similar example

Why should we disconnect cache?

When a table changes the query cache
flushes.

If there are tables that changes often we
should disconnect cache to simulate real

usage.

Prepare for stress

For the test use environment similar to the
production environment.

same OS and OS version, same storage
engines for tables...

Prepare for stress

Do benchmarking after every change on
database or query.

Prepare for stress

Get a tool.

Prepare for stress

mysqlslap --user=root --password=root --create-
schema=himym --concurrency=10 --iteration=3 --
query=query3

--concurrency - the number of clients to simulate
--iteration - number of times to run the test
--create-schema - database to be tested
--query - query or file with queries

Let's slap MySQL

Mysqlslap

select SQL_NO_CACHE types.name, count(pictures.id)
from types
left join pictures on pictures.type_id=types.id
group by types.name
union
select SQL_NO_CACHE 'other' as name, count(id)
from pictures
where type_id is NULL;

average time: 22.606 s

Let's slap MySQL

QUERY 1

Keep the database as small as possible. This will save
memory for data and the size of indexes.
eg.
● TINYINT instead of INT where possible (TINYINT

occupy only 1 Byte since INT 4 Bytes)
● VARCHAR with good estimate of number of

character instead of CHAR

Let's slap MySQL

First improvement: customize data types

select SQL_NO_CACHE types.name, count(pictures.id)
from types
left join pictures on pictures.type_id=types.id
group by types.name
union
select SQL_NO_CACHE 'other' as name, count(id)
from pictures
where type_id is NULL;

Size of type.id and place.id is denomided to TINYINY.
Now the average time: 14.122 s

Let's slap MySQL

QUERY 1 (again)

Indexes should be created carefully. In most cases,
added correctly, may dramatically speed up the queries.
Generally speaking we should create indexes on these
columns that we use for JOINs and clauses WHERE,
ORDER BY and GROUP BY.

Test your queries after adding a new index.

Let's slap MySQL

Second improvement: add indexes

select SQL_NO_CACHE types.name, count(pictures.id)
from types
left join pictures on pictures.type_id=types.id
group by types.name
union
select SQL_NO_CACHE 'other' as name, count(id)
from pictures
where type_id is NULL;

Indexes on people_pictures.person_id, people_pictures.
picture_id, pictures.type_id
Now the average time: 6.021s

Let's slap MySQL

QUERY 1 (again)

select SQL_NO_CACHE filename, date
from pictures
where type_id = 5
order by date
limit 10 OFFSET 0;

We can observe even better improvement for simple
select.
For this query adding an index on pictures.date
improves the timing from:
6.408 to 0.039.

Let's slap MySQL

QUERY 2

Join Type
● ALL - full table scan will occur - very bad indicator
● index, seems much better but works only with some

storage engines
● ref - all rows with matching values are read

Let's slap MySQL

EXPLAIN some important information

Possible indexes
● show what indexes may be used
● if this column is NULL, there are no relevant indexes.

In this case, you may be able to improve the
performance of your query by examining the WHERE
clause to check whether it refers to some column or
columns that would be suitable for indexing.

Let's slap MySQL

EXPLAIN some important information

Key
The key column indicates the key (index) that MySQL
actually decided to use. If MySQL decides to use one of
the possible_keys indexes to look up rows, that index is
listed as the key value.

BTW: MySQL may use the indexes more efficiently if
they are the same type and size.

Let's slap MySQL

EXPLAIN some important information

Rows to examine
The rows column indicates the number of rows MySQL
believes it must examine to execute the query.
MySQL analyze the key distribution to provide best
optimization plan. By default they key distribution is
assumed to be uniform

Use ANALYZE table to reinitiate this analyze on update
table data.

Let's slap MySQL

EXPLAIN some important information

Extra info
Useful hints ex. unnecessary filesort or conditions that
will never be fulfilled

Let's slap MySQL

EXPLAIN some important information

Let's slap MySQL

EXPLAIN is your friend
Let's go back to QUERY 1:

select_typ
e

table type possible_k
eys

key key
_len

ref rows Extra

PRIMARY types ALL 5 Using temporary;
Using filesort

PRIMARY pictures ref index_type
_id

index_ty
pe_id

2 himym3.
types.id

6 (null)

UNION pictures ref index_type
_id

index_ty
pe_id

2 const 41539 Using where

UNION
RESULT

<union1,
2>

ALL (null)

Try to keep your queries simple.
NULL may occupy more space than other data types.

Let's slap MySQL

Third improvement: get rid of UNION
and NULL columns if possible

Why there is a filesort?

MySQL uses filesor by default for GROUP BY. Whe can

turn it off using ORDER BY NULL.

select SQL_NO_CACHE types.name, count(pictures.id)
from types
left join pictures
on pictures.type_id=types.id
group by types.name
order by NULL;

average time: 5.919s

Let's slap MySQL

QUERY 1 (version2)

Most of the execution time is taken to process the
pictures table, while the one that is more interesting for
this query is the types table.

To overcome this we can provide an extra column
types._count. Every time a picture is added, deleted or
updated this column will be updated.

Let's slap MySQL

Fourth improvement: trick with procedures
and triggers

To keep the data coherent we can use procedures and
triggers that works inside the database and are not
depended on any external interface.

Since triggers are atomic operation we don't need to
worry about data integrity.

Let's slap MySQL

Fourth improvement: trick with procedures
and triggers

select name, _count from types;

average time 0.004s

Let's slap MySQL

QUERY 1 (version 3)

Let's list all characters and number of pictures where
they are tagged.

We can make it in at least two ways:

Let's slap MySQL

Same resultset - different queries.

select SQL_NO_CACHE people.name, count(people_pictures.

id) as pictures_count

from people_pictures

right join people

on (people.id=people_pictures.person_id)

group by people.name

order by pictures_count desc;

Let's slap MySQL

QUERY 3 (version 1)

select SQL_NO_CACHE people.name, count(people_pictures.

id) as pictures_count

from people_pictures

left join people

on (people_pictures.person_id = people.id)

group by people.name

order by pictures_count desc;

Let's slap MySQL

QUERY 3 (version 2)

Query 3 version 1: 10.559
Query 3 version 2: 19.812

Let's slap MySQL

Surprise!

10.559 vs. 19.812

Let's slap MySQL

EXPLAIN Query 3 (version 1)

select
type

table type possibl
keys

key key_len ref rows Extra

SIMPLE people ALL 11 Using temporary;
Using filesort

SIMPLE people_
pictures

ref index_per
son_id

index_pe
rson_id

1 himym4.
people.id

16200 (null)

Let's slap MySQL

EXPLAIN Query 3 (version 2)

select
type

table type possible
keys

key ref rows Extra

SIMPLE people_
pictures

ALL 900010 Using temporary;
Using filesort

SIMPLE people eq_ref PRIMARY PRIMAR
Y

himym4.
people_pictures.
person_id

1 (null)

select SQL_NO_CACHE people.name, count(people_pictures.

id) as pictures_count

from people

straight_join people_pictures on (people.

id=people_pictures.person_id)

group by people.name

order by pictures_count desc;

Let's slap MySQL

And the winner is.... ;)

● MySQL considers many factor to calculates
optimization plan

● different optimization plan for left and right join
● number of rows for join is just an educated guess

(use ANALYZE TABLE table - to analyze key
distribution for table with data - this may improve
optimization plan)

● use STRAIGHT_JOIN to force join order

Let's slap MySQL

Why this happened?

select SQL_NO_CACHE filename, date

from pictures

join people_pictures

on (people_pictures.picture_id = pictures.id)

where person_id = 7

order by date

limit 10 OFFSET 0;

Let's slap MySQL

Similar example - QUERY 4 version 1

Let's slap MySQL

select SQL_NO_CACHE filename, date

from pictures

straight_join people_pictures

on (people_pictures.picture_id = pictures.id)

where person_id = 7

order by date

limit 10 OFFSET 0;

Similar example - QUERY 4 version 2

Let's slap MySQL

Similar example - QUERY 4 version 1 vs version 2

average execution time for 10 concurrent clients
 2.660s vs. 0.226s

select SQL_NO_CACHE filename, group_concat(name)

from people_pictures

left join pictures

on (people_pictures.picture_id=pictures.id)

join people

on (people_pictures.person_id=people.id)

group by filename

order by date

limit 1,20;

Let's slap MySQL

QUERY 5

time for single query: 23.186s

select SQL_NO_CACHE filename, group_concat(name)

from pictures

straight_join people_pictures

on (people_pictures.picture_id=pictures.id)

join people

on (people_pictures.person_id=people.id)

group by filename

order by date

limit 20;

Let's slap MySQL

QUERY 5

time for single query: 8.030

In fact we just need to get 20 newest pictures...

We could use where clause with subquery that will
choose first 20 newest pictures...
but...

MySQL doesn't support LIMIT in subqueries..

Let's slap MySQL

QUERY 5

(In Postgres such query would look like this:)

select filename, array_agg(name)

from people_pictures

join people

on (people_pictures.person_id = people.id)

join pictures

on (people_pictures.picture_id = pictures.id)

where picture_id in

(select id from pictures order by date limit 20)

group by filename;

Let's slap MySQL

QUERY 5

or we can divide it to two queries and join it in our
program code:

Let's slap MySQL

Query 5

$query = 'select id from pictures order by date desc limit 1, 20;';
$res=$db->query($query);

$pictures_array=array();

foreach($res as $row){
 foreach($row as $value){
 $pictures_array[]=$value;
 }
}

$pictures = implode(', ', $pictures_array);

$query = "select picture_id, group_concat(name) from people_pictures
join people on (people_pictures.people_id=people.id) where picture_id
in ($pictures) group by picture_id";
$res=$db->query($query);

Let's slap MySQL

Query 5

As we can see there are many factors that influence the
performance of the database but also many solutions for
improving the execution time.
● analyse design of your DB
● check if your indexes works
● run Explain for slow performing queries
● don't hesitate to use stored procedures
● go beyond the DB if necessary

Let's slap MySQL

Conclusions

● QUESTIONS?

● OBRIGADA!

